Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Biol Chem ; 299(2): 102836, 2023 02.
Article in English | MEDLINE | ID: covidwho-2239311

ABSTRACT

Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine ß-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where ß-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.


Subject(s)
Disease Susceptibility , Endoplasmic Reticulum , Host Microbial Interactions , Molecular Chaperones , Murine hepatitis virus , Animals , Mice , Astrocytoma/pathology , Astrocytoma/virology , Brain Neoplasms/pathology , Brain Neoplasms/virology , Cell Communication , Cell Line, Tumor , Connexin 43/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Gap Junctions/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Murine hepatitis virus/metabolism , Protein Transport , Transfection
2.
Viruses ; 15(1)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2200877

ABSTRACT

The ß-Coronavirus mouse hepatitis virus (MHV-A59)-RSA59 has a patent stretch of fusion peptide (FP) containing two consecutive central prolines (PP) in the S2 domain of the Spike protein. Our previous studies compared the PP-containing fusogenic-demyelinating strain RSA59(PP) to its one proline-deleted mutant strain RSA59(P) and one proline-containing non-fusogenic non-demyelinating parental strain RSMHV2(P) to its one proline inserted mutant strain RSMHV2(PP). These studies highlighted the crucial role of PP in fusogenicity, hepato-neuropathogenesis, and demyelination. Computational studies combined with biophysical data indicate that PP at the center of the FP provides local rigidity while imparting global fluctuation to the Spike protein that enhances the fusogenic properties of RSA59(PP) and RSMHV2(PP). To elaborate on the understanding of the role of PP in the FP of MHV, the differential neuroglial tropism of the PP and P mutant strains was investigated. Comparative studies demonstrated that PP significantly enhances the viral tropism for neurons, microglia, and oligodendrocytes. PP, however, is not essential for viral tropism for either astroglial or oligodendroglial precursors or the infection of meningeal fibroblasts in the blood-brain and blood-CSF barriers. PP in the fusion domain is critical for promoting gliopathy, making it a potential region for designing antivirals for neuro-COVID therapy.


Subject(s)
Murine hepatitis virus , Spike Glycoprotein, Coronavirus , Viral Tropism , Animals , Mice , Murine hepatitis virus/physiology , Peptides/metabolism , Proline , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
3.
Viruses ; 14(4)2022 04 17.
Article in English | MEDLINE | ID: covidwho-1792411

ABSTRACT

Combined in silico, in vitro, and in vivo comparative studies between isogenic-recombinant Mouse-Hepatitis-Virus-RSA59 and its proline deletion mutant, revealed a remarkable contribution of centrally located two consecutive prolines (PP) from Spike protein fusion peptide (FP) in enhancing virus fusogenic and hepato-neuropathogenic potential. To deepen our understanding of the underlying factors, we extend our studies to a non-fusogenic parental virus strain RSMHV2 (P) with a single proline in the FP and its proline inserted mutant, RSMHV2 (PP). Comparative in vitro and in vivo studies between virus strains RSA59(PP), RSMHV2 (P), and RSMHV2 (PP) in the FP demonstrate that the insertion of one proline significantly resulted in enhancing the virus fusogenicity, spread, and consecutive neuropathogenesis. Computational studies suggest that the central PP in Spike FP induces a locally ordered, compact, and rigid structure of the Spike protein in RSMHV2 (PP) compared to RSMHV2 (P), but globally the Spike S2-domain is akin to the parental strain RSA59(PP), the latter being the most flexible showing two potential wells in the energy landscape as observed from the molecular dynamics studies. The critical location of two central prolines of the FP is essential for fusogenicity and pathogenesis making it a potential site for designing antiviral.


Subject(s)
Demyelinating Diseases , Spike Glycoprotein, Coronavirus , Animals , Mice , Peptides/metabolism , Proline , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL